Suppose that \(0< p\) and \(p\neq 1\text{.}\) Applying the integration power rule gives us the indefinite integral \(\displaystyle \int \frac{1}{x^p}\, dx=\frac{1}{(1-p)}x^{1-p}+C\text{.}\)
Activity5.8.19.
(a)
If \(0< p< 1\text{,}\) which of the following statements must be true? Select all that apply.
Consider when \(p=1\text{.}\) Then \(\dfrac{1}{x^p}=\dfrac{1}{x}\) and \(\displaystyle \int \frac{1}{x^p}\, dx=\displaystyle \int \frac{1}{x}\, dx=\ln|x|+C\text{.}\)
(a)
What can we conclude about \(\displaystyle \int_1^\infty \frac{1}{x}\, dx\text{?}\)
There is not enough information to determine whether this integral converges or diverges.
Fact5.8.22.
Let \(c, p>0\text{.}\)
\(\displaystyle \int_0^c \frac{1}{x^p}\, dx\) converges if and only if \(p< 1\text{.}\)
\(\displaystyle \int_c^\infty \frac{1}{x^p}\, dx\) converges if and only if \(p > 1\text{.}\)
Activity5.8.23.
Consider the plots of \(f(x), g(x), h(x) \) where \(0 < g(x) < f(x) < h(x)\text{.}\)
If \(\displaystyle \int_1^\infty f(x)\, dx\) is convergent, what can we say about \(g(x), h(x)\text{?}\)
\(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are both convergent.
\(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are both divergent.
Whether or not \(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are convergent or divergent cannot be determined.
\(\displaystyle \int_1^\infty g(x)\, dx\) is convergent and \(\displaystyle \int_1^\infty h(x)\, dx\) is divergent.
\(\displaystyle \int_1^\infty g(x)\, dx\) is convergent and \(\displaystyle \int_1^\infty h(x)\, dx\) could be either convergent or divergent.
Activity5.8.24.
Consider the plots of \(f(x), g(x), h(x) \) where \(0 < g(x) < f(x) < h(x)\text{.}\) If \(\displaystyle \int_1^\infty f(x)\, dx\) is divergent, what can we say about \(g(x), h(x)\text{?}\)
\(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are both convergent.
\(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are both divergent.
Whether or not \(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are convergent or divergent cannot be determined.
\(\displaystyle \int_1^\infty g(x)\, dx\) could be either convergent or divergent and \(\displaystyle \int_1^\infty h(x)\, dx\) is divergent.
\(\displaystyle \int_1^\infty g(x)\, dx\) is convergent and \(\displaystyle \int_1^\infty h(x)\, dx\) is divergent.
Activity5.8.25.
Consider the plots of \(f(x), g(x), h(x) \) where \(0 < g(x) < f(x) < h(x)\text{.}\) If \(\displaystyle \int_0^1 f(x)\, dx\) is convergent, what can we say about \(g(x)\) and \(h(x)\text{?}\)
\(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are both convergent.
\(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are both divergent.
Whether or not \(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are convergent or divergent cannot be determined.
\(\displaystyle \int_0^1 g(x)\, dx\) is convergent and \(\displaystyle \int_0^1 h(x)\, dx\) is divergent.
\(\displaystyle \int_0^1 g(x)\, dx\) is convergent and \(\displaystyle \int_0^1 h(x)\, dx\) can either be convergent or divergent.
Activity5.8.26.
Consider the plots of \(f(x), g(x), h(x) \) where \(0 < g(x) < f(x) < h(x)\text{.}\) If \(\displaystyle \int_0^1 f(x)\, dx\) is divergent, what can we say about \(g(x)\) and \(h(x)\text{?}\)
\(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are both convergent.
\(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are both divergent.
Whether or not \(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are convergent or divergent cannot be determined.
\(\displaystyle \int_0^1 g(x)\, dx\) can be either convergent or divergent and \(\displaystyle \int_0^1 h(x)\, dx\) is divergent.
\(\displaystyle \int_0^1 g(x)\, dx\) is convergent and \(\displaystyle \int_0^1 h(x)\, dx\) is divergent.
Fact5.8.27.
Let \(f(x), g(x)\) be functions such that for \(a<x<b\text{,}\)\(0\leq f(x) \leq g(x)\text{.}\) Then
If \(\displaystyle\int_a^b g(x)\, dx\) converges, so does the smaller \(\displaystyle\int_a^b f(x)\, dx\text{.}\)
If \(\displaystyle\int_a^b f(x)\, dx\) diverges, so does the bigger \(\displaystyle\int_a^b g(x)\, dx\text{.}\)
Activity5.8.28.
Compare \(\dfrac{1}{x^3+1}\) to one of the following functions where \(x>2\) and use this to determine if \(\displaystyle \int_2^\infty \frac{1}{x^3+1}\, dx\) is convergent or divergent.
\(\displaystyle \dfrac{1}{x}\)
\(\displaystyle \dfrac{1}{\sqrt{x}}\)
\(\displaystyle \dfrac{1}{x^2}\)
\(\displaystyle \dfrac{1}{x^3}\)
Activity5.8.29.
Comparing \(\dfrac{1}{x^3-4}\) to which of the following functions where \(x>3\) allows you to determine that \(\displaystyle\int_3^{\infty} \dfrac{1}{x^3-4}\, dx\) converges?